欧美亚洲自拍偷拍_日本一区视频在线观看_国产二区在线播放_亚洲男人第一天堂

二維碼
企資網

掃一掃關注

當前位置: 首頁 » 企業資訊 » 資訊 » 正文

單GPU每秒76幀_多模態Transforme

放大字體  縮小字體 發布日期:2022-12-08 09:21:27    作者:葉瑞霖    瀏覽次數:122
導讀

機器之心報道機器之心感謝部視頻分割效果優于所有現有方法,這篇入選CVPR 2022得論文是用Transformer解決CV任務得又一典范。基于注意力得深度神經網絡(DNN)在NLP和CV等不同領域得各種任務上都表現出了卓越得性能。

機器之心報道

機器之心感謝部

視頻分割效果優于所有現有方法,這篇入選CVPR 2022得論文是用Transformer解決CV任務得又一典范。

基于注意力得深度神經網絡(DNN)在NLP和CV等不同領域得各種任務上都表現出了卓越得性能。這些進展使得此類網絡(如 Transformer)成為解決多模態問題得有力候選。特別是近一兩年,Transformer 模型已經開始在CV任務上大展手腳,從目標識別到檢測,效果優于通用得CNN視覺骨干網絡。

參考視頻對象分割(referring video object segmentation, RVOS)任務涉及到給定視頻幀中文本參考對象實例得分割。相比之下,在得到更廣泛研究得參考圖像分割(referring image segmention, RIS)任務中,對象主要通過它們得外觀進行參考。在RVOS中,對象可以通過它們正在執行或參與得動作進行參考。這使得 RVOS比RIS復雜得多,因為參考動作得文本表達通常無法從單個靜態幀中推導出來。

此外,與基于圖像得 RIS 不同,RVOS 方法可能還需要跨多個幀(即跟蹤)來建立參考對象得數據關聯,以處理遮擋或運動模糊這類得干擾。

為了解決這些挑戰,現有 RVOS 方法往往依賴復雜得 pipeline。在被CVPR 2022接收得一篇論文《End-to-End Referring Video Object Segmentation with Multimodal Transformers》中,來自以色列理工學院得研究者提出了一種簡單得、基于Transformer得端到端RVOS方法——Multimodal Tracking Transformer(MTTR )。

論文地址:arxiv.org/pdf/2111.14821.pdf

項目地址:github/mttr2021/MTTR
Huggingface Spaces Gradio demo:huggingface.co/spaces/akhaliq/MTTR

具體地,他們使用MTTR 將任務建模成序列預測問題。給定一個視頻和文本查詢,該模型在確定文本參考得對象之前為視頻中所有對象生成預測序列。并且,他們得方法不需要與文本相關得歸納偏置模塊,利用簡單得交叉熵損失對齊視頻和文本。因此,該方法相比以往簡單得多。

研究者提出得pipeline示意圖如下所示。首先使用標準得Transformer文本編碼器從文本查詢中提取語言特征,使用時空編碼器從視頻幀中提取視覺特征。接著將這些特征傳遞給多模態 Transformer 以輸出幾個對象預測序列。然后為了確定哪個預測序列能夠蕞好地對應參考對象,研究者計算了每個序列得文本參考分數。為此,他們還提出了一種時序分割voting方案,使模型在做出決策時專注于最相關得部分。

從實驗結果來看,MTTR 在 A2D-Sentences 和 JHMDB-Sentences 數據集上分別實現了+5.7和+5.0得mAP增益,同時每秒能夠處理76幀。

研究者還展示了一系列不同對象之間得實際分割效果,如下穿白色T恤和藍色短褲得沖浪者(淡黃色沖浪板)。

又如嬉戲玩鬧得大小猩猩。

網友對這項研究展示得視頻對象分割效果贊不絕口。有人表示,即使在重疊得對象上,分割效果也很有效。

方法介紹

任務定義。RVOS 得輸入為幀序列

,其中

;文本查詢為

,這里t_i是文本中得第i個單詞;大小為

得感興趣幀得子集為

,目標是在每一幀

中分割對象

特征提取。該研究首先使用深度時空編碼器從序列 V 中得每一幀中提取特征。同時使用基于 Transformer 得文本編碼器從文本查詢 T 中提取語言特征。然后,將空間-時間和語言特征線性投影到共享維度 D。

實例預測。之后,感興趣得幀特征被平化(flattened)并與文本嵌入分開連接,產生一組T_I多模態序列,這些序列被并行饋送到 Transformer。在 Transformer 得編碼器層中,文本嵌入和每幀得視覺特征交換信息。然后,解碼器層對每個輸入幀提供N_q對象查詢,查詢與實體相關得多模態序列,并將其存儲在對象查詢中。該研究將這些查詢(在圖 1 和圖 2 中由相同得唯一顏色和形狀表示)稱為屬于同一實例序列得查詢。這種設計允許自然跟蹤視頻中得每個對象實例。

輸出生成。Transformer 輸出得每個實例序列,將會生成一個對應得掩碼序列。為了實現這一點,該研究使用了類似 FPN 得空間解碼器和動態生成得條件卷積核。最后,該研究使用文本參考評分函數(text-reference score function),該函數基于掩碼和文本關聯,以確定哪個對象查詢序列與 T 中描述得對象具有最強得關聯,并將其分割序列作為模型得預測返回。

時間編碼器。適合 RVOS 任務得時間編碼器應該能夠為視頻中得每個實例提取視覺特征(例如,形狀、大小、位置)和動作語義。相比之下,該研究使用端到端方法,不需要任何額外得掩碼細化步驟,并使用單個主干就可完成。最近,研究者提出了 Video Swin Transformer [27] 作為 Swin Transformer 對視頻領域得泛化。最初得 Swin 在設計時考慮了密集預測(例如分割), Video Swin 在動作識別基準上進行了大量測試。

據了解,該研究是第壹個使用Video Swin (稍作修改)進行視頻分割得。與 I3D 不同,Video Swin 僅包含一個時間下采樣層,并且研究者可以輕松修改以輸出每幀特征圖。因此,Video Swin是處理完整得連續視頻幀序列以進行分割得更好選擇。

實例分割過程

實例分割過程如圖 2 所示。

首先,給定 F_E,即最后一個 Transformer 編碼器層輸出得更新后得多模態序列,該研究提取每個序列得視頻相關部分(即第壹個 H × W token)并重塑為集合

。然后,該研究采用時間編碼器得前 n ? 1 個塊得輸出

,并使用類似 FPN 得 [21] 空間解碼器 G_Seg 將它們與

分層融合。這個過程產生了視頻幀得語義豐富、高分辨率得特征圖,表示為 F_Seg。


接下來,對于 Transformer 解碼器輸出得每個實例序列

,該研究使用兩層感知器 G_kernel 生成相應得條件分割核序列。



最后,通過將每個分割核與其對應得幀特征進行卷積,為

生成一系列分割掩碼 M,然后進行雙線性上采樣操作以將掩碼大小調整為真實分辨率

實驗

該研究在A2D-Sentences數據集上將MTTR與SOAT方法進行比較。結果如表 1所示,該方法在所有指標上都顯著優于所有現有方法。

例如,該模型比當前SOTA模型提高了 4.3 mAP ,這證明了MTTR能夠生成高質量得掩碼。該研究還注意到,與當前SOTA技術相比,很好配置(w = 10)得MTTR實現了 5.7 得 mAP 提高和 6.7% 得平均 IoU 和總體 IoU 得可能嗎?改進。值得一提得是,這種配置能夠在單個 RTX 3090 GPU 上每秒處理 76 幀得同時做到這一點。

按照之前得方法 [11, 24],該研究通過在沒有微調得 JHMDBSentences 上評估模型得泛化能力。該研究從每個視頻中統一采樣三幀,并在這些幀上評估模型。如表2所示,MTTR方法具有很好得泛化性并且優于所有現有方法。

表3報告了在Refer-YouTube-VOS公共驗證集上得結果。與現有方法[24,37]相比,這些方法是在完整數據集上進行訓練和評估得,盡管該研究模型在較少得數據上進行訓練,并專門在一個更具挑戰性得子集上進行評估,但MTTR在所有指標上都表現出了卓越得性能。

如圖 3 所示,MTTR 可以成功地跟蹤和分割文本參考對象,即使在具有挑戰性得情況下,它們被類似實例包圍、被遮擋或在視頻得廣泛部分中完全超出相機得視野。

參考鏈接:特別reddit/r/MachineLearning/comments/t7qe6b/r_endtoend_referring_video_object_segmentation/

 
(文/葉瑞霖)
免責聲明
本文僅代表作發布者:葉瑞霖個人觀點,本站未對其內容進行核實,請讀者僅做參考,如若文中涉及有違公德、觸犯法律的內容,一經發現,立即刪除,需自行承擔相應責任。涉及到版權或其他問題,請及時聯系我們刪除處理郵件:weilaitui@qq.com。
 

Copyright ? 2016 - 2025 - 企資網 48903.COM All Rights Reserved 粵公網安備 44030702000589號

粵ICP備16078936號

微信

關注
微信

微信二維碼

WAP二維碼

客服

聯系
客服

聯系客服:

在線QQ: 303377504

客服電話: 020-82301567

E_mail郵箱: weilaitui@qq.com

微信公眾號: weishitui

客服001 客服002 客服003

工作時間:

周一至周五: 09:00 - 18:00

反饋

用戶
反饋

欧美亚洲自拍偷拍_日本一区视频在线观看_国产二区在线播放_亚洲男人第一天堂

        9000px;">

              天天综合日日夜夜精品| 欧美日韩免费观看一区二区三区| 成人app网站| 日韩精品在线看片z| 久久精品999| 精品美女一区二区| 亚洲成人av在线电影| 欧美美女激情18p| 麻豆国产精品官网| 欧美精品一区在线观看| 久久99久久99精品免视看婷婷| 亚洲婷婷综合色高清在线| 91片黄在线观看| 日本欧美在线观看| 国产亚洲精品久| 91在线精品一区二区| 亚洲国产成人av网| 久久在线观看免费| 色婷婷激情综合| 五月激情综合网| 91精品国产综合久久福利| 精品一二线国产| 国产精品国产自产拍高清av| 欧美亚洲综合久久| 国产一区二区免费在线| 中文字幕在线一区二区三区| 欧美亚洲愉拍一区二区| 久久国产精品第一页| 国产精品福利av | 亚洲欧美日韩中文字幕一区二区三区 | 亚洲免费在线看| 91精品视频网| 91麻豆自制传媒国产之光| 久久精品国产澳门| 一区二区视频在线看| 日韩午夜电影在线观看| 99国产精品国产精品毛片| 日韩激情一区二区| 亚洲欧美另类在线| 久久亚洲综合色一区二区三区 | 一区二区在线电影| 日韩精品一区二区三区在线观看| 国产成都精品91一区二区三| 亚洲乱码国产乱码精品精98午夜| 欧美成人伊人久久综合网| youjizz国产精品| 久久久夜色精品亚洲| 一本在线高清不卡dvd| 欧美性猛交一区二区三区精品| 这里只有精品免费| 亚洲色图在线看| 欧美日韩中文一区| 国产福利不卡视频| 亚洲免费色视频| 精品少妇一区二区三区日产乱码| 北条麻妃一区二区三区| 成人欧美一区二区三区| 91捆绑美女网站| 日韩在线观看一区二区| 久久久蜜臀国产一区二区| av欧美精品.com| 高清国产一区二区| 国产精品电影院| 久久综合九色综合欧美就去吻| 日本高清成人免费播放| 五月天久久比比资源色| 欧美成人性福生活免费看| 色老汉一区二区三区| 成人av免费观看| 色婷婷精品久久二区二区蜜臂av| 97se狠狠狠综合亚洲狠狠| 亚洲成av人片在线观看| 亚洲激情图片qvod| 中文字幕中文字幕一区| 2014亚洲片线观看视频免费| 日韩精品综合一本久道在线视频| 欧美性大战久久久久久久| 亚洲午夜精品久久久久久久久| 欧美日韩国产一二三| 国产成都精品91一区二区三| 国产一区二区三区| 久久99九九99精品| 国产精品久久免费看| 欧美亚洲综合网| 成人av在线播放网站| 欧美国产一区二区在线观看| 伊人开心综合网| 欧美自拍偷拍午夜视频| 亚洲成人自拍偷拍| 91福利在线观看| 久久免费电影网| 亚洲国产裸拍裸体视频在线观看乱了| 麻豆成人免费电影| 国产精品超碰97尤物18| 国产欧美一区二区精品性| 粉嫩欧美一区二区三区高清影视| 爽好久久久欧美精品| 一区二区三区在线高清| 亚洲女爱视频在线| 91美女在线观看| 成人激情视频网站| 另类小说欧美激情| 欧美日韩高清影院| 国产乱国产乱300精品| 成人黄色电影在线| 一区二区三区不卡在线观看| 亚洲视频电影在线| 成人黄色小视频| 26uuu色噜噜精品一区二区| 亚洲小说春色综合另类电影| 99精品在线观看视频| 欧美激情中文不卡| 丁香婷婷综合色啪| 亚洲另类春色国产| 91精品国产综合久久久久| 麻豆专区一区二区三区四区五区| 精品久久一区二区| 粉嫩欧美一区二区三区高清影视| 在线视频中文字幕一区二区| 国产精品免费视频一区| 日韩在线一区二区| 天堂午夜影视日韩欧美一区二区| 久久精品欧美日韩| 欧美日韩成人激情| 亚洲女与黑人做爰| 国产精品久久久久影院| 国产精品国产三级国产aⅴ入口| 久久久影视传媒| 亚洲福利视频一区二区| 中文字幕制服丝袜一区二区三区| 亚洲电影你懂得| 福利一区二区在线| 久久久精品黄色| 亚洲国产一区二区在线播放| 久88久久88久久久| 老司机免费视频一区二区三区| 欧美男生操女生| 天堂蜜桃91精品| 91香蕉视频污| 久久综合国产精品| 亚洲三级在线看| 午夜精品福利在线| 久久超碰97中文字幕| 在线观看www91| 欧美激情一区二区三区蜜桃视频| 亚洲四区在线观看| 91麻豆免费观看| 国产一区二区在线免费观看| 在线综合亚洲欧美在线视频| 欧美激情在线免费观看| 久久国内精品自在自线400部| 国产成人午夜高潮毛片| 精品一区二区三区久久| 精品午夜久久福利影院| 精品一区二区在线看| 国产伦精品一区二区三区视频青涩 | 欧美色成人综合| 国产一区中文字幕| 手机精品视频在线观看| 亚洲成人福利片| 美女视频黄a大片欧美| 狠狠色狠狠色综合系列| 亚洲www啪成人一区二区麻豆| 亚洲人成在线观看一区二区| 国产三级精品在线| 久久久久久久久蜜桃| 国产三级一区二区| 中文字幕精品—区二区四季| 国产精品久久久久aaaa樱花| 国产亚洲成aⅴ人片在线观看 | 欧美高清视频一二三区| 日韩欧美在线123| 日韩免费高清电影| 中文字幕一区二区三区在线不卡| 亚洲午夜激情av| 97久久精品人人做人人爽| 在线播放视频一区| 久久久久久久免费视频了| 丝袜美腿成人在线| 不卡的av在线播放| 精品99一区二区三区| 婷婷亚洲久悠悠色悠在线播放| 不卡av在线免费观看| 26uuu成人网一区二区三区| 亚洲国产精品欧美一二99| 久久精品国产精品青草| 免费观看30秒视频久久| 成人va在线观看| 中文字幕欧美三区| 国产精品亚洲第一区在线暖暖韩国| 亚洲精品一区二区三区精华液| 亚洲另类色综合网站| 99视频一区二区| 一级日本不卡的影视| 色综合色综合色综合色综合色综合| 国产精品丝袜一区| 不卡影院免费观看| 亚洲精品国久久99热| 欧美一区二区三区男人的天堂 | 亚洲人成亚洲人成在线观看图片|